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Interfacial instability arising from evaporation of a single component liquid is
investigated using linear and weakly nonlinear analysis. Evaporative convection is
studied taking into account the fluid dynamics of both liquid and vapour phases as
well as lateral rigid sidewalls. Both open and closed systems are addressed. The nature
of the bifurcation and the change in heat flux in the nonlinear regime are determined.
It is shown that depending upon the aspect ratio of the geometry, either supercritical
or subcritical branching behaviour is possible.

1. Introduction
Evaporation from a liquid in contact with its vapour can lead to an instability that

is manifested by the onset of surface undulations and non-uniform velocity fields.
This instability may occur even in the absence of gravity or surface tension gradient
effects. Consider a typical evaporation process as depicted in figure 1. In such a
process, the input variables are the fluid depths and the temperature difference across
the layers. If the upper and lower boundaries are impermeable, we have a closed
system and the net average evaporative flux must be zero; the pressure at the top
plate is an output variable as are the velocity and temperature profiles and surface
shape. However, if the upper and lower walls are permeable porous plates, we have
an open system and the pressure external to the top plate must also be assigned. In
order to maintain a steady state, the pressure external to the bottom plate depends on
this top pressure via a hydrostatic balance and the pressure drop across the porous
walls. The total evaporative flux in such an open system becomes yet another output
variable. Regardless of whether we have an open or closed system, the mechanism
for the instability is the same. It bears some similarity to that of the morphological
instability seen in the solidification of a pure substance. To see why, let us consider
an evaporating layer with a heated liquid as in figure 1. A mechanical perturbation at
the deflecting interface is reinforced as liquid thermal gradients at a trough become
stronger, while vapour thermal gradients become weaker. The evaporation rate then
increases as it depends on the difference in heat flux at the interface. As this difference
becomes greater, a trough becomes deeper. The reverse situation occurs at a crest,
i.e. crests become steeper. Surface tension comes in to stabilize the disturbance as
do viscous and thermal relaxations, helping in the selection of a wavelength. This
physical argument for the instability does not require the interface to be deflectable.
In fact, when the interface is taken to be flat, the instability establishes because a
temperature perturbation at the interface generates a local cold spot (for example),
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Figure 1. Schematic of two-phase evaporation depicting the instability. The dotted lines refer
to the perturbed interface and the perturbed local gradients while the solid lines refer to the
unperturbed or base interface and the base local gradients.

which drives more heat to it, causes evaporation and cools it even further. This
evaporative flow is weak in the liquid and strong in the vapour on account of the
disparate densities of the two phases. The process saturates to a steady state with
a definite wavelength on account of viscous and thermal diffusion. If the vapour is
taken to be passive, there are no transverse flows in the vapour phase and so hot
flows from high pressure evaporating regions cannot flow to cooler lower pressure
regions and help reign in the instability.

To put the present work in the context of earlier studies, it is helpful to place the
past research into broad categories where (a) the upper phase is taken to be fluid
dynamically either passive or active, (b) the entire system is either closed or open, (c)
the control variable to initiate the instability is either an assigned temperature drop
across the system or the pressure at an upper location away from the interface, (d )
the upper phase is either pure or contains an inert gas, and (e) the thermodynamic
equilibrium is assumed at the interface versus assuming a non-equilibrium relation
involving mass exchange.

The early work of Burelbach, Bankoff & Davis (1988) and recent works by Margerit,
Dondlinger & Dauby (2005, 2006) and Oron (1999) dealt with fluid mechanically
passive vapour layers; both sets of studies included thermocapillary convection and
both addressed nonlinear aspects of the instability in open systems. Burelbach et al.
(1988) derived long wavelength approximations in which the temperature drop across
a thin layer was taken to be the control variable. They then considered conditions
for dry-out using a non-equilibrium relation for interfacial mass exchange. Margerit
et al.’s work predicted the nonlinear evaporation rates in an open system with an inert
gas, assuming thermodynamic and thermal equilibrium at the interface. The control
of the instability in their case was obtained by adjusting the upper gas pressure.
Their main interest was in predicting the stability of various planforms in infinitely
wide layers. Contrasting these works are those that include fluid mechanics in the
upper vapour phase. Among these are the works of Huang & Joseph (1992), Ozen
& Narayanan (2004a,b), Haut & Colinet (2005) and McFadden et al. (2007). Using
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linearized stability methods, Huang & Joseph (1992) analysed an infinitely wide bilayer
heated from above and showed that the instability must begin as oscillatory motion,
i.e. via Hopf bifurcations. A major result of their work is that for low evaporation
rates, there is little difference between assuming thermal equilibrium along with
thermodynamic equilibrium versus assuming a temperature jump and thermodynamic
equilibrium between the pressure and the temperature at the interface in each phase.
Ozen & Narayanan showed for unbounded regions that when the liquid is heated the
instability is delayed when flow in the vapour becomes strong. Their reasoning was
based on the large flows in the vapour carrying heat from high-pressure hot regions to
low-pressure cold regions. The effect of vapour height on fluid motion in the vapour
phase accounting for inert gas motion was the essence of the work of Haut & Colinet
(2005). Their analysis showed that the absence of inert gases reduces the effect of
Marangoni motion substantially and thin vapour heights reduce vapour flow as well.
Recent theoretical work involving fluid flow in the vapour is due to McFadden et. al.,
who showed that the entropy difference between the phases near the thermodynamic
critical state has an immense impact on the instability. There is limited experimental
work on evaporative instability to confirm any of the above theories. A recent report
by Zhang (2006) suggests that buoyancy convection plays an important role in all
but very thin layers. His experiments were done in the presence of inert gases in the
vapour phase.

In contrast with earlier work, our interest is in understanding the physics of the
instability in open and closed configurations where lateral walls are included and
where the base state is strictly a steady state. As the vapour flow tends to dampen
the instability, the role of sidewall proximity is dual. It can dampen the liquid flow
and enhance stability or dampen vapour flow and enhance instability. Understanding
this dual role is one aspect of this work. Another aspect is to determine the nature
of the bifurcation behaviour as the sidewall proximity changes. This is important
as working in regimes of supercritical bifurcation is experimentally desirable to
make a connection with predictions. Finally, buoyancy-driven flows combined with
evaporation act differently than pure evaporation in closed versus open systems. This
too is of interest on account of microgravity applications and is also a subject of our
discussion. Our work will reveal the non-monotonic nature of the critical temperature
difference with aspect ratio when buoyancy is taken into account but not otherwise.

2. Formulation of the problem
To analyse a concrete problem, we consider a two-dimensional rectangular container

with a liquid such as water or alcohol underlying its own vapour. Both fluid phases
are taken to be of finite extent. The top and bottom walls are assumed to be perfectly
conducting, with the bottom wall temperature higher than the top. The vertical
sidewalls are taken to be perfectly insulating and the free surface is allowed to deflect.
Imagine as a first case that the top vapour phase is devoid of all inert gases and
that the system is closed, i.e. the top and bottom walls are impermeable. This means
that the net evaporative flux must be zero as long as the vapour phase is assumed
to be incompressible, a very reasonable assumption in most instances. Under such
circumstances, phase change is allowed only through perturbations at the interface; in
other words, the total evaporative flux is zero, whereas the local flux need not be so. A
second case considered below allows the upper and lower walls to be permeable. The
pressures at the exterior of the upper and lower walls are additional input variables.
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As in the first case, the temperature difference between the plates is controlled until
the instability sets in. A possible variant on the second case is to make the wall
temperatures equal to one another and to control the upper plate pressure until the
instability commences. However, this variant on the second case is not considered as
it does not add anything substantially new. Each of the two cases under consideration
is interesting in its own right, yielding qualitatively different results. We now move
on to the case of impermeable walls and zero total evaporative flux, first giving the
nonlinear equations that govern the phenomena, then analysing these equations by
linearized and weakly nonlinear methods.

3. The nonlinear equations
The modelling equations are nonlinear on several counts. The principal reason is

that the local evaporation rate must depend on the local temperature gradients at
the interface, thus making the velocity field a functional of the temperature field. In
the absence of buoyancy or surface tension gradients, the dependence of the velocity
perturbations on the temperature field arises from the coupling between the latter
and the pressure field at the interface. This makes the convective heat transfer a
quadratic functional of temperature. In addition to this nonlinearity, the curvature of
the interface is a nonlinear functional of its position. These nonlinearities are behind
the instability phenomena associated with evaporation.

The nonlinear equations are put into scaled form using d , the liquid depth, for
the length scale, κ/d for the velocity scale, d2/κ for the time scale and μκ/d2 for
the pressure scale while the temperature is measured with respect to the cold plate
temperature Tcold and scaled by the temperature drop across the system (Thot − Tcold).
Here, the symbols ν, κ and μ are the kinematic viscosity, the thermal diffusivity and
the dynamic viscosity, respectively.

We begin by giving the scaled momentum equations in each phase, which are

1

Pr

(
∂v

∂t
+ v · ∇v

)
= −∇Π + ∇2v + RaT

and

ν

ν∗
1

Pr

(
∂v∗

∂t
+ v∗ · ∇v∗

)
= − μ

μ∗ ∇Π∗ + ∇2v∗ +
α∗

α

ν

ν∗ RaT ∗.

The scaled energy equations in each phase are

∂T

∂t
+ v · ∇T = ∇2T

and
∂T ∗

∂t
+ v∗ · ∇T ∗ =

κ∗

κ
∇2T ∗.

The continuity equations in each phase are

∇ · v = 0

and

∇ · v∗ = 0.

In the equations above, the asterisk denotes the vapour phase, v and T are the
scaled velocity and temperature fields, while Π conveniently expresses the modified
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scaled pressure field. It differs from the usual scaled pressure field, P , by the scaled
static liquid head, i.e.

∇Π = ∇P +
ρgd3

μκ
k,

where k is the unit base vector in the positive z direction. The dimensionless groups
Pr and Ra are the liquid Prandtl and Rayleigh numbers, where Ra is defined as
Ra = (αg(Thot − Tcold)d

3)/νκ and where the thermal expansion coefficient is denoted by
α. Absent from each of the energy equations is a term arising from viscous dissipation.
Using the scale factors above, we see easily that such terms are of O(10−15) and may
therefore be discarded in comparison with the diffusive terms.

At the top and bottom walls, located at z = δ and z = −1, the temperatures are
kept constant while no-slip and no mass transfer conditions apply. The sidewalls,
located at x =0 and λ, are assumed to be perfectly insulating and impermeable to
mass transfer. Here λ is the scaled width, i.e. the aspect ratio, and δ is the scaled
upper-phase depth. For the case of rigid vertical walls, we assume that no-slip holds.
Denoting the interface position by Z(x, t), we assume for the case of rigid walls that
Z = 0 at x = 0, λ, i.e. a fixed contact condition holds. This is a physically realizable
condition for liquid–vapour interfacial instability experiments as shown by Ozen et al.
(2005). It corresponds to experiments with a pinning edge at the sidewalls. Such edges
disallow a meniscus to be formed. For the case when the walls are taken to be
slippery, a traction-free surface is assumed in addition to ∂Z/∂x = 0; this is a free
contact condition and is of theoretical interest, rather than of practical value.

Observe that this problem is an initial value problem, and in the cases under
consideration it can be easily shown from divergence-free velocity fields and the
interfacial mass balance that the volumes of the fluid regions must be constants in
time. We now turn to the boundary conditions obtained from the jump phase balances
(cf. Slattery 1990) under the restriction that the interface is singular, possessing only
surface tension but not any surface viscosity. This is reasonable for pure substances
(cf. Edwards, Brenner & Wasan 1991).

The mass balance at the interface, z = Z(x, t), is

(v − u) · n =
ρ∗

ρ
(v∗ − u) · n. (3.1)

Here ρ and ρ∗ are the liquid density and vapour density, respectively, and the unit
outward normal, n, is given by

n =
−∂Z/∂x i + k[

1 + (∂Z/∂x)2
]1/2

,

while the interfacial speed, u · n, is given by

u · n =
∂Z/∂t[

1 + (∂Z/∂x)2
]1/2

.

The continuity of tangential component of velocity at the interface yields v · t = v∗ · t .
Here t represents the unit tangent vector, which is given by

t =
i + (∂Z/∂x)k[

1 + (∂Z/∂x)2
]1/2

.
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The interfacial force balance equation in scaled form becomes

Ca

[
1

Pr
v(v − u) − ρ∗

ρ

1

Pr
v∗(v∗ − u)

]
· n − Ca Ma∇ST t +2H n = Ca(T − T∗) · n, (3.2)

where T= −P I + S is the total stress with P being the scaled pressure and S is
the extra viscous stress tensor. In addition, Ca =μκ/γ d is the Capillary number
and γ is the interfacial tension, while the Marangoni number, Ma , is defined as
Ma =(γT (Thot − Tcold)d)/μκ , with γT being the negative of the surface tension gradient
with respect to temperature, and 2H = ∂2Z/∂x2/[1 + (∂Z/∂x)2]3/2 is twice the surface
mean curvature.

The energy balance at the interface is{
−1 + KPC

[
1

2
(v − u)2 − 1

2
(v∗ − u)2

]}
(v − u) · n

− E(∇T · n − k∗

k
∇T ∗ · n) − VPC

[
S · (v − u) − μ∗

μ
S∗ · (v∗ − u)

]
· n = 0, (3.3)

where KPC = κ2/£d2, E = k(Thot − Tcold)/ρ£κ , VPC = νκ/£d2, k is the liquid thermal
conductivity and £ is the latent heat per unit mass. Henceforth, E is termed the
evaporation number.

In the closed container case the base evaporation rate is zero, and in the open
container case the pressure is adjusted suitably such that the evaporation rate is zero
because the qualitative nature of the instability does not depend on this assumption. In
addition, the local evaporation is obtained from linearized stability and consequently
assumed to be very small. Now, Ward & Stanga (2001) and Shankar & Deshpande
(1990) have shown that the temperature jump across the interface is very small if the
evaporation rate is also small. It is therefore valid to assume thermal equilibrium at
the interface, i.e. T = T ∗. In addition, we assume that local thermodynamic equilibrium
at the interface holds via the familiar Clausius–Clapeyron equation, viz.

ΠKE(P ∗ − P ∗
base) = ln

(
T ∗

T ∗
base

)
, (3.4)

where ΠKE = (ρ/ρ∗)(νκ/£d2), P ∗
base and T ∗

base are the scaled interfacial pressure and
temperature of the vapour in a reference state, i.e. P ∗

base is the vapour pressure
corresponding to T ∗

base. A non-equilibrium relation (cf. Schrage 1953) would be
appropriate for the case in which the scaled base evaporation rate is of O(1) or
greater.

In writing the Clausius–Clapeyron equation, the surface curvature’s correction on
the vapour pressure is ignored as the ratio of the vapour to liquid density is of
O(10−3) and is therefore very small. Unlike solidification where surface curvature acts
to reduce the melt point via the Gibbs–Thomson effect and selects the wavelength
of the instability, the corresponding change in typical liquid–vapour phase-change
problems, called the Kelvin correction, is insignificant and plays little role in the
selection of the wavelength, this being achieved by the surface tension that acts on
the pressure difference at the interface. As observed by McFadden et al. (2007), this
would not be the case when the fluids are near their thermodynamic critical state as
the density difference between the vapour and the liquid is not large and the Kelvin
correction attains importance. We now turn to the linear stability analysis for the first
case, the closed container problem.
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4. Linear stability analysis for the closed container case
4.1. The base state solution and the linearized equations

To study interfacial instability, we apply arbitrary infinitesimal disturbances to the
domain state variables and linearize the domain and boundary equations about the
base state, which in the closed container case corresponds to no flow in each phase.
The base state temperature profiles, indicated by the subscript zero, become

T0 = − k∗

kδ + k∗ z +
kδ

kδ + k∗

and

T ∗
0 = − k

kδ + k∗ z +
kδ

kδ + k∗ ,

where δ = d∗/d is the ratio of vapour-to-liquid fluid depths.
Denoting the disturbance or deviation variables by the subscript 1 and assuming

that they grow or die as eσ t , where σ is an inverse growth or decay constant, we
proceed to obtain the linearized perturbation equations in both phases. For the lower
layer, the equations of motion become

σ

Pr
vx1 = −∂P1

∂x
+ ∇2vx1

and
σ

Pr
vz1 = −∂P1

∂z
+ ∇2vz1 + RaT1.

The continuity equation is

∂vx1

∂x
+

∂vz1

∂z
= 0

and the energy equation becomes

σT1 = ∇2T1 − dT0

dz
vz1.

For the upper layer, we have likewise

σ

Pr

ν

ν∗ v∗
x1 = − μ

μ∗
∂P ∗

1

∂x
+ ∇2v∗

x1,

σ

Pr

ν

ν∗ v∗
z1 = − μ

μ∗
∂P ∗

1

∂z
+ ∇2v∗

z1 +
α∗

α

ν

ν∗ RaT ∗
1 ,

∂v∗
x1

∂x
+

∂v∗
z1

∂z
= 0

and

σ
κ

κ∗ T ∗
1 = ∇2T ∗

1 − κ

κ∗
dT ∗

0

dz
v∗

z1.

At the interface, the linearized equation for the mass balance is

vz1 − ρ∗

ρ
v∗

z1 =

(
1 − ρ∗

ρ

)
σZ1. (4.1)

Here, Z1 is the perturbed interface position. It is the lowest order mapping of the
deflected surface to the reference flat surface. The linearized equation for the no-slip
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boundary condition at the interface is

vx1 = v∗
x1. (4.2)

To these we add the linearized equations for normal and tangential stress, which are

Ca(P1 − P ∗
1 ) − 2Ca

(
∂vz1

∂z
− μ∗

μ

∂v∗
z1

∂z

)
− BoZ1 +

∂2Z1

∂x2
= 0, (4.3)

where Bo = ((ρ − ρ∗)gd2)/γ is the Bond number and

μ∗

μ

(
∂v∗

x1

∂z
+

∂v∗
z1

∂x

)
−

(
∂vx1

∂z
+

∂vz1

∂x

)
− Ma

(
∂T1

∂x
+

dT0

dz

∂Z1

∂x

)
= 0. (4.4)

We observe that the Bond number makes its appearance for the first time in (4.3).
It arose when the perturbation of the pressure field P about the reference state
is corrected by the mapping Z1 times the difference of the base pressure gradients
(Chandrasekhar 1961; Johns & Narayanan 2002). It would have arisen earlier in the
nonlinear equation for the interfacial force balance, (3.2), had we chosen to express all
of our formulas in terms of the modified pressure, Π , instead of the scalar pressure,
P . As noted earlier, the difference between these two variables is the scaled static
liquid head.

The interfacial energy balance and thermal equilibrium lead to

vz1 − E

(
k∗

k

∂T ∗
1

∂z
− ∂T1

∂z

)
= σZ1 (4.5)

and

T1 +
dT0

dz
Z1 = T ∗

1 +
dT ∗

0

dz
Z1. (4.6)

We now add the linearized Clausius–Clapeyron equation, viz.

ΠKEP ∗
1 − ΠPEZ1 =

T ∗
1 + (dT ∗

0 /dz)Z1

T ∗
0

, (4.7)

where ΠPE = (gd)/£ .
The remaining boundary conditions that must be linearized are those at the top,

bottom and sidewalls. At the top wall, the perturbed velocity and temperature are
zero. Hence,

v∗
x1 = v∗

z1 = T ∗
1 = 0 at z = δ

and so too at the bottom wall, where

vx1 = vz1 = T1 = 0 at z = −1

must hold.
At the sidewalls, the conditions for the upper fluid reflect no flow, no-slip and no

heat transport, i.e.

v∗
x1 = v∗

z1 =
∂T ∗

1

∂x
= 0 at x = 0, λ.

Likewise, at the sidewalls, the conditions for the lower fluid are

vx1 = vz1 =
∂T1

∂x
= 0 at x = 0, λ.
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ρ = 960 kg m−3 ρ∗ = 0.6 kg m−3

μ= 2.9 × 10−4 kg m−1s−1 μ∗ = 1.3 × 10−5 kg m−1 s−1

k = 6.8 × 10−1 J m−1 s−1 K−1 k∗ = 2.5 × 10−2 J m−1 s−1 K−1

κ = 1.7 × 10−7 m2 s−1 κ∗ = 2.0 × 10−5 m2 s−1

α = 6.0 × 10−4 K−1 α∗ = 6.0 × 10−3 K−1

£ = 2.3 × 106 J kg−1 γ = 5.8 × 10−2 N m−1

γT = 2 × 10−4 Nm−1 K−1

Table 1. The physical properties used in the computations for the water–water vapour
system near 100◦C and 1 atm.

Having linearized the domain and boundary equations, we turn to solving for
either the critical temperature drop across the bilayer system under neutral conditions
or the inverse time constant, σ for a given input scaled temperature drop. In either
case, the thermophysical properties and depths are held fixed.

4.2. The linear stability calculations

To be definite we restrict our calculations to the water–water vapour system whose
properties, adopted from Huang & Joseph (1992), are given in table 1. We determine
the conditions for the onset of steady motion by setting σ to zero. To justify this, a
separate set of calculations was performed to obtain the values of σ when the bilayer
is heated from the liquid side. It is found that the leading σ is always real regardless
of the values of the input variables. Thus, neutral stability may be found by setting
σ to zero. Doing this makes the scaled temperature drop across the liquid–vapour
bilayer, the output ‘eigenvalue’.

The eigenvalues are obtained using a Chebyshev spectral method, as outlined by
Trefethen (2000). It may be observed that if the sidewalls are taken to be traction free,
the variables may be separated into horizontal modes and the equations that determine
the conditions for the onset of the instability are ordinary differential equations
(ODEs) in the z direction. These can be easily solved by symbolic manipulation
or using a numerical method. Thus, the two-dimensional code developed using the
spectral method can be benchmarked against the one-dimensional solution when
traction-free vertical wall conditions are employed. The agreement between the two
calculations was found to be excellent, to within 1/10 %. In addition, the calculations
were checked for convergence by increasing the number of spectral grid points
and fourth significant place accuracy was assured for both eigenvalues and their
companion eigenfunctions.

We present the results of the linearized stability calculation by making a comparison
between pure evaporative instability and evaporation with the added effect of
Marangoni convection. The comparison is depicted in figure 2. It shows that the
addition of the Marangoni effect does not appreciably change the threshold for the
onset of the instability, Ec, in the water–water vapour system. This result was also
observed by Ozen & Narayanan (2004a), who noted that in an unbounded container,
the inclusion of phase change in a bilayer heated from the liquid side actually makes
the surface temperature variation weaker than it might have been in its absence. The
explanation is that due to the phase change, the otherwise hot trough temperature
goes down because the input energy is used to convert liquid into its vapour. An
analogous argument applies to the cool crests. As a result, the phase-change action
thus reduces the temperature perturbations along the interface, which in turn reduces
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Figure 2. Graph of the critical evaporation number, Ec , vs. the aspect ratio, λ, showing the
negligible effect of Marangoni convection in the water–water vapour system. Ra is taken to
be zero. Sidewalls are assumed to be rigid, the liquid depth is 2 mm and the dimensionless
vapour depth, δ, is 0.1.

surface tension gradient driven convection. Of course, this observation depends much
on the magnitude of the coefficient of surface tension change with temperature.
However, in the typical case of the water–water vapour system and many other
systems such as alcohols and ordinary volatile organics, Marangoni convection is
certainly inconsequential during evaporation into a pure vapour. This is, however,
not true of Rayleigh convection where the flow does not depend upon the strength
of the interfacial temperature gradients. In fact, a quick estimate of E/Ra, using the
thermophysical properties given in table 1 and using reasonable liquid depths such as
1 mm, shows that the ratio is quite small and of the order of 10−5. In other words,
buoyancy effects cannot really be neglected even for small liquid depths unless a
microgravity environment is assumed.

To understand the role of an active water vapour phase in a rigid rectangular
system, we consider a concrete calculation fixing the water depth to 2 mm and only
vary the depth of the vapour in two different calculations so that δ is either 0.1 or 0.2.
In each case, the scaled critical temperature difference, Ec, is plotted against the aspect
ratio, and in each case buoyancy convection is also assumed to take place. The results
are shown in figure 3. This figure shows that increasing the depth of water vapour can
make the interface more stable. This result is in agreement with the observations of
Ozen & Narayanan (2004a) that vapour flow stabilizes the interface as the flow takes
hot vapours from troughs and dumps them onto cool crests, thereby reducing the
transverse temperature gradients, the interface deflections and the transverse flows.
For each case, we find that increasing the aspect ratio results in the critical temperature
difference approaching a constant value, thus making the bilayer system most unstable
for a very large aspect ratio. This is reasonable because at large aspect ratios the
thermal and momentum diffusions are small and hence the bilayer system is unstable,
whereas for the small aspect ratio the thermal and momentum diffusions are large
enough to dampen the disturbances of the temperature and velocity. The observation
that the scaled critical temperature difference does not decrease monotonically with
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Figure 3. Graph of the critical evaporation number, Ec , vs. aspect ratio, λ, showing the
stabilizing role of scaled water vapour depth, δ, for the case of rigid sidewalls. Rayleigh
convection is assumed; the liquid depth is 2 mm.

aspect ratio is related to the inclusion of buoyancy convection in the model and is
discussed below.

One might be interested in the role of rigid sidewalls on the interfacial instability.
To examine this via a definite calculation, we fix the liquid depth to 2 mm while δ is
again taken to be 0.1. Two computations are depicted in figure 4. In the first case,
traction-free sidewalls are assumed, and in the second case rigid sidewalls are assumed.
This figure shows that adding the rigid sidewall boundary condition always makes the
interface more stable. This is indicated by the fact that the scaled critical temperature
difference is higher than that with traction-free sidewalls. This too is reasonable since
the no-slip velocity boundary condition can dampen the velocity field in the higher
viscosity liquid more than the lower viscosity vapour. To assure that our reasoning
is correct, we can increase the viscosity of the vapour artificially to see if the rigid
sidewalls can damp out the vapour flow and thus the attendant stabilization. Indeed,
we find in such calculations, not reported here, that the rigid sidewalls actually damp
out the vapour flow in the case of the artificially high viscosity and thus the stability,
thereby confirming that under ordinary realistic circumstances the fluid flow in the
vapour is not dampened whereas the liquid flow is slowed in the presence of rigid
vertical walls.

An interesting observation is that in either traction-free case or rigid sidewall case,
the neutral curve is not monotonically dampened with the increase in aspect ratio.
The reason is that with the change of aspect ratio, there is a competition between
thermal diffusion and density gradients in the horizontal direction. And without a
density gradient, Rayleigh convection cannot be generated. At very small aspect
ratios, both thermal diffusion and density gradients are large. The first is stabilizing
and the other promotes buoyancy flows. The stability at small aspect ratios must
then be due to the strength of stabilizing thermal diffusion overwhelming the unstable
density gradients. This is understandable given that thermal diffusion scales inversely
with the square of the wavelength, whereas the density gradient increases inversely as
the wavelength to the first power. If the aspect ratio increases, both thermal diffusion
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Figure 4. Graph of the critical evaporation number, Ec , vs. the aspect ratio, λ, showing that
rigid sidewalls offer more stability than slippery walls. The liquid depth is 2 mm while the
dimensionless vapour depth, δ, is 0.1. Rayleigh convection is assumed.

and density gradients are decreased. However, the thermal diffusion is clearly reduced
more significantly such that the density gradients play a dominant role. As a result,
the system becomes unstable.

An item of interest is the role of Rayleigh convection in the pattern formation of
evaporation. To understand this, let us first turn off the effect of Rayleigh convection
and give the velocity vector plot in both domains, as shown in figure 5(a). This
figure shows that there is only one convection cell in the liquid domain indicating
that multiple cellular patterns cannot be formed. However, once we turn on the
effect of Rayleigh convection, we instantly find multiple convection cells, as shown
in figure 5(b). This shows that without Rayleigh convection, multi-transverse cellular
patterns cannot be formed since density gradients do not play a role; as a result, there
is only one physical mechanism, viz. thermal diffusion, that can control the patterns.
Once we add the second physical mechanism of density gradients, the competition
kicks in and we are able to obtain multiple convection cells. The absence of multi-
transverse cells in evaporative instability is not system dependent. It is a consequence
of the nature of the instability. Evaporative instability is caused by the gradients
in base temperature fields; here temperature perturbations at an interface are self-
reinforcing, cause pressure perturbations and hence flow. Horizontal or transverse
gradients of temperature are not needed to drive the instability unlike buoyancy-
driven convection. Short wavelength disturbances are stabilized by diffusion and
surface tension. In other words, there is no competition between mechanisms at
either short or long wavelengths of disturbances. That is why pure evaporation can
give rise only to single roll cells and multiple cells cannot arise. In this context it is
noteworthy that evaporative instability is much like other phase-change instabilities
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Figure 5. A comparison of flow profiles (a) without Rayleigh convection and (b)with Rayleigh
convection showing the presence of multiple cells in the latter. The liquid depth is 2 mm, the
dimensionless vapour depth is δ = 0.1 and the aspect ratio is around 3. The ordinate and
abscissa markings are the ‘z’ and ‘x’ positions.

such as electrodeposition, precipitation and solidification of pure materials where
heat is removed from the liquid, in that the relationship of the control parameter
(voltage difference in the case of electrodeposition or subcooling in solidification)
versus wavenumber is monotonic. The common characteristic of these problems is
that they are driven by a gradient of potential normal to the interface such as electrical
or thermal and stabilized by interfacial energy and diffusion.
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To summarize, the linearized stability calculations tell us that (a) the Marangoni
effect plays a very minor role, (b) multi-cellular patterns are not possible with pure
evaporation and that buoyancy effects must be added to create transverse cells, (c)
flow in the vapour plays a major role in the stabilization of the interface, and (d )
rigid sidewalls impede flow in both phases and despite the fact that vapour flows
offer stability, rigid walls offer more overall stability by containing liquid phase flows
compared with traction or traction-free sidewalls.

To understand what happens as we go beyond critical requires a nonlinear analysis
that we now discuss.

5. Nonlinear analysis
The solution branch in the vicinity of the critical point is of interest and its nature

can only be determined from a nonlinear analysis. The branching is, typically, either
a pitchfork or transcritical in character. The type of bifurcation can be determined in
a straightforward manner, simplified from the dominant balance method as explained
by Grindrod (1991) and given in detail in the Appendix. We commence the nonlinear
analysis in our problem by anticipating a forward pitchfork and look for a steady
supercritical solution by increasing the scaled �T from its critical value by a small
amount (1/2)ε2. If the analysis shows that the bifurcation is a backward pitchfork,
then the scaled temperature drop is simply decreased from its critical value. Now the
scaled temperature drop appears as Ra , Ma or E; their critical values being denoted by
a subscript c. Therefore, in the case when buoyancy is included we check if a forward
pitchfork obtains by advancing the scaled �T from its critical value, i.e. by writing

Ra = Rac +
1

2
ε2,

Ma =
Ma

Ra

(
Rac +

1

2
ε2

)
,

and

E =
E

Ra

(
Rac +

1

2
ε2

)
and observe that Ma/Ra and E/Ra are free of �T .

We then expand the state variables about the base state as

u = u0 + ε(u1) +
1

2
ε2(u2) +

1

6
ε3(u3) + · · · ,

where the domain state variables are generically denoted by the variable ‘u’.
The interface position, Z, is also expanded likewise as

Z = Z0 + εZ1 +
1

2
ε2Z2 +

1

6
ε3Z3 + · · · .

Here Z1, Z2, etc. are the various domain mappings evaluated at the surface and must
be determined in the course of our calculations at various orders.

In the case where buoyancy is ignored, we simply write

E = Ec +
1

2
ε2
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whence

Ma =
Ma

E

(
Ec +

1

2
ε2

)
and continue as before.

We substitute the expansions of domain and surface variables into the nonlinear
equations and obtain expanded equations at various orders. In considering the
branching behaviour we are interested only in the steady nonlinear problem and
so we set the time derivative, ∂/∂t , to zero.

As in the case of the eigenvalue problem, the two-dimensional calculations were
benchmarked by checking them in the case of traction-free sidewalls against the
formal solution of ODEs that emanate when the variables are expanded in normal
horizontal modes. The comparisons of the solutions at all orders including the value
of A2 were within 0.1 %.

5.1. Results from the nonlinear analysis

Once we know the value of A, we can calculate the actual change in the heat transfer
rate or evaporation rate when we advance the control parameter beyond the critical
point. The scaled heat transfer enhancement due to flow over that of conduction at
the bottom plate to second order is calculated as∫ λ

0

(
ε
∂T1

∂z
+

1

2
ε2 ∂T2

∂z

)
dx∫ λ

0

(
dT0

dz

)
dx

, (5.1)

where ε =
√

2 | (E − Ec) | =
√

2Ec | ((E/Ec) − 1) | when pure evaporation is
considered and when both buoyancy convection and evaporation are operative
we have ε =

√
2 | (Ra − Rac) | =

√
2Rac | ((Ra/Rac) − 1) | =

√
2Rac | ((E/Ec) − 1) |.

This last equality follows because Ra/Rac = E/Ec.
In figure 6, we have plotted the enhancement versus E/Ec for a system in which

liquid depth and depth ratio are 4 mm and 0.1, respectively. The calculations are
carried out assuming the physical properties of water and water vapour. Results
show that when E increases over Ec by 10 %, then the heat transfer enhancement
is at least as much even when Rayleigh convection is absent. Note that the heat
transfer increase for traction-free sidewalls is higher than that for rigid sidewalls.
This is what we expected since traction-free sidewalls have stronger flow, which can
convect more heat away from the bottom plate. Taking into account the Rayleigh
convection in the model, we find that the heat transfer increase is greater than the
in case for which buoyancy convection is absent. This occurs even though the critical
temperature drop for evaporation with buoyancy is smaller than the case of pure
evaporation; it is important enough that the attendant buoyancy flow is strong and
can convect substantial heat away.

Results of the weakly nonlinear analysis show that the aspect ratio and fluid depths
can change the bifurcation nature. For example, in the case when the water depth
is 2 mm, δ = 0.1 and sidewalls are traction free, results show that the bifurcation is
subcritical at large aspect ratios while supercritical bifurcation is observed at smaller
aspect ratios. This is reported in table 2. However, when we keep everything else
fixed and only increase the water vapour depth to δ = 0.2, we find that the otherwise
subcritical bifurcation turns into a supercritical one. This is also shown in table 2.
In other words, the fluid depths can also change the bifurcation nature. In another
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Aspect ratio 1.0 3.0 10.0

Traction-free walls (δ = 0.1) Supercritical Supercritical Subcritical
Traction-free walls (δ = 0.2) Supercritical Supercritical Supercritical
Rigid walls (δ = 0.1) Supercritical Supercritical Supercritical

Table 2. The nature of the bifurcation when the liquid depth is 2 mm, for various values of
δ in the case of pure evaporation.
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Figure 6. Heat transfer enhancement vs. the control parameter, E/Ec . The liquid depth is
4 mm, the dimensionless vapour depth, δ, is 0.1 and the aspect ratio is 1.

comparison, this time between the first and last rows of table 2, we can see that the
boundary conditions can change the bifurcation nature unless the aspect ratio is large
enough that one cannot distinguish rigid from traction-free sidewalls.

In the calculations shown in table 2, we only consider pure evaporation where
Rayleigh convection is dropped. When Rayleigh convection is included, calculations
done by us but not included here reveal that subcritical bifurcations turn supercritical
upon increasing the liquid depth. This is due to the fact that increasing liquid depths
increase buoyancy flows which in turn make the bifurcation more supercritical. This
by itself comes as no surprise for it is known that pure Rayleigh convection gives
only supercritical bifurcation. In addition to this observation, we find that the role
of Marangoni flow is inconsequential in the post-onset regime much like its minimal
role in the linearized stability problem.

6. Results of linear and nonlinear analysis for the open system
Moving to the case where we have an open container, i.e. the second case, allows

the possibility that net evaporation can change in the base and perturbed states.
Here, both the top and bottom walls are permeable by allowing liquid and vapour
transport through a layer of porous media. In this case, the input parameters are
the top pressure and the temperature difference between top and bottom walls. In
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Figure 7. Schematic of the second case where now the valves are open and the upper and
lower walls are permeable.

experiments, one can increase the temperature difference until the instability occurs,
while adjusting the top pressure in such a way as to obtain a zero evaporative flux.
One can then go beyond the onset condition by holding the pressure fixed thereafter
and only increasing the temperature difference beyond the critical value. The second
case is shown in figure 7. The unperturbed equations remain the same as before save
at the top and bottom plates where they are now

vz =
Kpm

Ld
(PB − P ) (6.1)

and

v∗
z =

Kpm

Ld

μ

μ∗ (P ∗ − PT ), (6.2)

where Kpm is the permeability for the top and bottom media, assumed here to take
realistic values, L is the media thickness, assumed here to be the same for the top and
bottom walls and where d is, as always, the liquid depth. The variables PB and PT

are the bottom and top pressures. They are assigned and are related to each other.
Let us compare the results of linear instability analysis of the first two cases in the

absence of gravity. Results show that the second case is more stable in the absence
of Rayleigh convection, as shown in figure 8. However, when Rayleigh convection is
added, the reverse is observed, i.e. the second case is less stable in the presence of
Rayleigh convection as seen in figure 9. The reason why the second case is more stable
without Rayleigh convection is due to the strong vapour stabilizing flow induced by
the top plate boundary condition, which is more significant than the increase in the
liquid flow. However, if Rayleigh convection is added, the liquid flow gets stronger
and it dominates the vapour flow making the system more unstable. It is noteworthy
that unlike figure 9, figure 8 shows monotonic behaviour like the closed container
case and for the same reasons. Here too, the lateral walls have only a unilateral effect
on the evaporative instability unlike buoyancy-driven convection and this unilateral
effect leads to monotonic behaviour.
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Figure 8. A comparison of Ec vs. aspect ratio for the two cases showing that the second
case is more stable. The liquid depth is 2 mm and δ = 0.1. Rayleigh convection is ignored.
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Figure 9. A comparison of Ec vs. aspect ratio for the two cases, Rayleigh convection taken
into account showing the increased instability of the open case on account of upper and
bottom porous walls. The liquid depth is 2 mm, δ = 0.1.

As in the first case, the bifurcation nature, heat flux and evaporative flux are the
three items of interest and arise from the nonlinear analysis. We find that for fixed
fluid depths, the bifurcation nature will switch from supercritical to subcritical at
large aspect ratio. This is seen in table 3, where the effect of Rayleigh convection
is simply to delay the switch because of the large fluid flow. We find, as shown in
figures 10 and 11, that the second case has stronger heat transfer enhancement at the
bottom plate either with or without Rayleigh convection. This is reasonable given the
fact that the second case has a much stronger vapour and liquid flow, which increases
the heat transfer enhancement. Calculations show from the weakly nonlinear analysis
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Aspect ratio 1.0 3.0 10.0 15.0

Pure evaporation Supercritical Supercritical Supercritical Subcritical
Rayleigh convection added Supercritical Supercritical Supercritical Supercritical

Table 3. The nature of the bifurcation when the liquid depth is 2 mm, the dimensionless
vapour depth δ = 0.1 with traction-free sidewalls for the open valve case.
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Figure 10. Comparison of heat transfer enhancement between the closed and open cases in
the absence of Rayleigh and Marangoni convection. The liquid depth is 4 mm, the scaled
vapour depth, δ, is 0.1 and the aspect ratio is 1.

that in the absence or presence of gravity there is, understandably, an increase in
evaporative flux once the instability sets in. When comparing the two figures, we
observe that as expected the heat transfer for the closed and open containers with
Rayleigh convection lies above the corresponding curve when buoyancy convection
is neglected.

7. Summary
The linear and nonlinear analyses to study the onset condition of an evaporating

bilayer system in a rigid rectangular system show that (i) Marangoni convection
plays a trivial role in the interfacial instability; this can be expected of all volatile
systems as evaporation helps in the reduction of local hotspot temperature at the
evaporating locations of an interface and, likewise, increases the local warm spots
of the locally condensing parts of an interface; (ii) the vapour flow always plays a
stabilizing role as it causes flow from local hot high-pressure regions towards cool
low-pressure regions; (iii) rigid sidewalls always make the bilayer interface more stable
because their action on suppressing liquid flow instability is more important than the
suppression of vapour flow stability; (iv) open flow evaporation offers more stability
than closed flow evaporation under microgravity on account of the enhanced vapour
flow; this result is reversed when buoyancy convection is taken into account since
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Figure 11. Heat transfer enhancement between both cases in the presence of Rayleigh
convection, liquid depth is 4 mm, dimensionless vapour depth is δ =0.1 and aspect ratio
is 1. Evaporation with Rayleigh convection.

traction or traction-free boundary conditions associated with open flow offer more
buoyancy destabilization; (v) patterns generating multicellular forms are not possible
in evaporation in microgravity; such patterns are associated with dominant buoyancy
interference; (vi) the depth of fluids and the type of sidewall boundary conditions
can change the bifurcation nature; and (vii) Rayleigh convection in the liquid side
can make the bifurcation more supercritical. Although our observations are based on
calculations depicted for the water–water vapour system, they have also been checked
against other typical volatile systems such as ethyl alcohol. The observations and their
physical explanations are therefore quite general. The calculations have shown many
distinct features of evaporation but two stand out. The first is the subtle difference
instability between open and closed systems. The second is the observation that like
other convective flow problems, forward pitchforks (Rosenblat, Davis & Homsy 1982)
are possible, and that like other phase-change problems, backward pitchforks cannot
be ruled out (BuAli, Johns & Narayanan 2006).

We are grateful to the Partner University Fund and the National Science Foundation
Grant CBET 0823748 for supporting travel to discuss our results with colleagues.

Appendix. The expansions of the nonlinear equations for various orders
The nonlinear analysis can be carried out by expanding the various state variables

about the critical or bifurcation point.
As an example, if the bifurcation is conjectured to be a forward pitchfork, then the

control parameter is advanced from its critical value by an amount (1/2)ε2. In other
words, denoting the control variable by Λ, where Λ is simply the scaled �T in our
problem, we write Λ =Λc + (1/2)ε2. This expansion simply defines ε. In response to
advancing the control variables, the calculated variables, say temperature, pressure
and velocity denoted by u, are assumed to take the form u = u0 +εu1 +(1/2)ε2u2 + · · ·.
Substituting these expansions into the nonlinear equations yields equations at various
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orders in ε whence the coefficients u0, u1, etc. are determined. In particular, u1 is
determined at O(ε) but only up to an arbitrary amplitude, A, since the equation is
linear and homogeneous. As the value of A is needed, we go to the second order,
i.e. to the equation obtained at O((1/2)ε2). The inhomogeneous terms at this order
are necessarily multiples of A2 and a solvability condition is required to obtain the
variables u2.

If solvability is not satisfied then A2 must be zero and a pitchfork is not possible.
This means that a transcritical bifurcation is expected and instead of our earlier
assumed expansion of Λ we define ε via Λ =Λc + ε and proceed as before.

However, if solvability is satisfied then we must go to third order in ε where a
balance is struck between terms that are multiples of A and those that are multiples of
A3. From this balance, we get A2. If A2 is positive, we have a supercritical bifurcation
and the calculation may be terminated. However, if A2 is found to be negative and
equal to a value −Q (for example), then the bifurcation is backward and we can see
this by simply starting all over with an expansion of Λ =Λc − (1/2)ε2 only to learn
that A2 is now positive and, in fact, precisely equal to Q. It is useful to note that
although u1 is an eigenfunction and is thus known up to an arbitrary constant of
normalization, A is a multiple of the reciprocal of this constant and so the product
Au1 is free of the constant. This simply means that it is not very useful to compare
values of A for different cases. Instead, one can compare Au1 or better yet compare
quantities such as the correction to heat transport at a boundary as a result of the
instability.

We now proceed to give the expressions for the order expansions of the nonlinear
equations for the reader who might like to try his hand at the details.

A.1. The first-order problem

At first order, we must determine u1 and Z1. The first-order problem turns out to be
the same as the eigenvalue problem and we denote its solution as

u1 = Aû1(x, z)

and

Z1 = AẐ1(x),

where A is the amplitude of the solution. To investigate the nature of the bifurcation,
we need to know the sign of A2. If A2 is positive, the pitchfork is forward and our
expansion holds. However, if A2 is negative, the original expansion is disallowed.
Instead, it must be re-expressed as Ra = Rac − (1/2)ε2, whence A2 turns out positive
and the pitchfork is backward. As A cannot be determined at first order, we move
onto the next order to see if we can determine the sign of A2.

A.2. The second-order problem

At the second order, we must determine u2 and Z2, and the unknown A, which carries
over from the first order. The domain equations at the second-order problem in the
lower layer are

− ∂P2

∂x
+ ∇2vx2 =

2

Pr

(
vx1

∂vx1

∂x
+ vz1

∂vx1

∂z

)
,

− ∂P2

∂z
+ ∇2vz2 + (RacT2 + T0) =

2

Pr

(
vx1

∂vz1

∂x
+ vz1

∂vz1

∂z

)
,

∂vx2

∂x
+

∂vz2

∂z
= 0
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and

∇2T2 − vz2

dT0

dz
= 2

(
vx1

∂T1

∂x
+ vz1

∂T1

∂z

)
.

Likewise, for the upper layer they are

− μ

μ∗
∂P ∗

2

∂x
+ ∇2v∗

x2 =
ν

ν∗
2

Pr

(
v∗

x1

∂v∗
x1

∂x
+ v∗

z1

∂v∗
x1

∂z

)
,

− μ

μ∗
∂P ∗

2

∂z
+ ∇2v∗

z2 +
α∗

α

ν

ν∗ (RacT
∗
2 + T ∗

0 ) =
ν

ν∗
2

Pr

(
v∗

x1

∂v∗
z1

∂x
+ v∗

z1

∂v∗
z1

∂z

)
,

∂v∗
x2

∂x
+

∂v∗
z2

∂z
= 0,

and

∇2T ∗
2 − κ

κ∗ v∗
z2

dT ∗
0

dz
= 2

κ

κ∗

(
v∗

x1

∂T ∗
1

∂x
+ v∗

z1

∂T ∗
1

∂z

)
.

Each of the interfacial conditions must also be expanded at second order. They are
all expressed at the reference surface z = 0. The mass balance becomes

vz2 + 2Z1

∂vz1

∂z
− 2vx1

∂Z1

∂x
=

ρ∗

ρ

(
v∗

z2 + 2Z1

∂v∗
z1

∂z
− 2v∗

x1

∂Z1

∂x

)
. (A 1)

At the interface, no-slip on velocity becomes

vx2 + 2Z1

∂vx1

∂z
+ 2vz1

∂Z1

∂x
= v∗

x2 + 2Z1

∂v∗
x1

∂z
+ 2v∗

z1

∂Z1

∂x
. (A 2)

The normal component of the force balance condition is

Ca

[
P2 + 2

∂P1

∂z
Z1 − P ∗

2 − 2
∂P ∗

1

∂z
Z1 − 2

(
∂vz2

∂z
+ 2

∂2vz1

∂z2
Z1

)

+ 2
μ∗

μ

(
∂v∗

z2

∂z
+ 2

∂2v∗
z1

∂z2
Z1

)]
+ 2

Ca

Pr
vz1(vz1 − v∗

z1) − BoZ2 +
∂2Z2

∂x2
= 0, (A 3)

and the tangential component of the force balance at the interface is

∂vx2

∂z
+ 2Z1

∂2vx1

∂z2
+

∂vz2

∂x
+ 2Z1

∂2vz1

∂x∂z
+ 8

∂vz1

∂z

∂Z1

∂x

=
μ∗

μ

[
∂v∗

x2

∂z
+ 2Z1

∂2v∗
x1

∂z2
+

∂v∗
z2

∂x
+ 2Z1

∂2v∗
z1

∂x∂z
+ 8

∂v∗
z1

∂z

∂Z1

∂x

]

− Ma

Ra
Rac

[(
∂T2

∂x
+

dT0

dz

∂Z2

∂x

)
+ 2Z1

∂2T1

∂x∂z
+ 2

∂T1

∂z

∂Z1

∂x

]
(A 4)

The interfacial energy balance at the second order is

−
(

vz2 + 2
∂vz1

∂z
Z1 − 2vx1

∂Z1

∂x

)
− E

Ra
Rac

[
∂T2

∂z
+ 2

∂2T1

∂z2
Z1 − 2

∂T1

∂x

∂Z1

∂x

− k∗

k
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2
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∂2T ∗
1

∂z2
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1
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∂Z1

∂x
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− 4VPC

∂vz1

∂z

(
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μ
v∗

z1

)
= 0, (A 5)

and the continuity of interfacial temperature condition is expressed as

T2 + 2Z1

∂T1

∂z
+ Z2

∂T0

∂z
= T ∗

2 + 2Z1

∂T ∗
1

∂z
+ Z2

∂T ∗
0

∂z
. (A 6)
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To close the problem at second order, we also need the interfacial phase-change
boundary condition, which is

ΠKE

(
P ∗

2 + 2
∂P ∗

1

∂z
Z1

)
− 1

T ∗
0

(
T ∗

2 + 2
∂T ∗

1

∂z
Z1 +

dT ∗
0

dz
Z2

)

+
1

T ∗2
0

(
T ∗

1 +
dT ∗

0

dz
Z1

)2

− ΠPEZ2 = 0, (A 7)

and the constant volume condition, i.e.
∫ λ

0
Z2 dx = 0. The boundary conditions at

z = δ and z = −1 are easily expanded at second order and consequently are not given
here. A comment about the constant volume requirement is in order. As mentioned
earlier, the constant volume requirement is automatically met in the dynamic problem
and therefore in the instability or eigenvalue problem. The steady problem, however, is
different. Here constant volume simply means that the volume is held at its base value
upon advancing the control variable beyond the critical. Another way of saying this
is that the heights of the liquid and vapour are always held constant and kept at their
base values even when the temperature difference is raised beyond its critical value.

Now the homogeneous part of the second-order problem is the eigenvalue problem.
Therefore, a solvability condition must be satisfied before we can solve for u2 and Z2.
However, the eigenvalue problem is not self-adjoint; hence, we must solve the adjoint
eigenvalue problem before we can check for solvability. The adjoint eigenvectors
were obtained numerically from the transpose of the matrix that results from the
numerical spectral method and the bi-orthogonality requirement was checked. Even
if the solvability condition is satisfied, the value of A2 cannot be determined at
this order because the inhomogeneous part is a multiple of A2. We must then go
to the third order with the hope of determining A2. However, if solvability is not
automatically satisfied then A2 is zero, and as this is not an acceptable result we
must conclude that the expansion is inappropriate and choose another expansion
to advance the scaled temperature drop, i.e. Ra = Rac + ε, this time expecting to
see a transcritical bifurcation with subsequent determination of A at the second
order. It is a simple matter to see, even without numerical computations, that for
the case of slippery sidewalls, solvability is automatically satisfied. However, for the
case of rigid sidewalls, this is less obvious and a numerical check on solvability is
required. Computations revealed that for the case of rigid sidewalls, solvability is
indeed satisfied for all values of input variables and so we proceed to third order with
the expectation of determining A2.

A.3. The third-order problem

Similar to the second order, the third-order problem also requires that a solvability
condition be satisfied in order that u3 and Z3 be found. This condition, then,
determines the value of A. To do all this requires the third-order equations. They are
as follows:

For the lower layer,

− ∂P3

∂x
+ ∇2vx3 =

3

Pr

(
vx1

∂vx2

∂x
+ vz1

∂vx2

∂z
+ vx2

∂vx1

∂x
+ vz2

∂vx1

∂z

)
,

− ∂P3

∂z
+ ∇2vz3 + (RacT3 + 3T1) =

3

Pr

(
vx1

∂vz2

∂x
+ vz1

∂vz2

∂z
+ vx2

∂vz1

∂x
+ vz2

∂vz1

∂z

)
,

∂vx3

∂x
+

∂vz3

∂z
= 0
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and

∇2T3 − vz3

dT0

dz
= 3

(
vx2

∂T1

∂x
+ vz2

∂T1

∂z
+ vx1

∂T2

∂x
+ vz1

∂T2

∂z

)
.

Likewise, for the upper layer

− μ

μ∗
∂P ∗

3

∂x
+ ∇2v∗

x3 =
ν

ν∗
3

Pr

(
v∗

x1

∂v∗
x2

∂x
+ v∗

z1

∂v∗
x2

∂z
+ v∗

x2

∂v∗
x1

∂x
+ v∗

z2

∂v∗
x1

∂z

)
,

− μ

μ∗
∂P ∗

3

∂z
+∇2v∗

z3+
α∗

α

ν

ν∗ (RacT
∗
3 + 3T ∗

1 )=
ν

ν∗
3

Pr

(
v∗

x1

∂v∗
z2

∂x
+ v∗

z1

∂v∗
z2

∂z
+v∗

x2

∂v∗
z1

∂x
+v∗

z2

∂v∗
z1

∂z

)
,

∂v∗
x3

∂x
+

∂v∗
z3

∂z
= 0

and

∇2T ∗
3 − κ

κ∗ v∗
z3

dT ∗
0

dz
= 3

κ

κ∗

(
v∗

x2

∂T ∗
1

∂x
+ v∗

z2

∂T ∗
1

∂z
+ v∗

x1

∂T ∗
2

∂x
+ v∗

z1

∂T ∗
2

∂z

)
.

For brevity, we do not provide the expansions of all boundary conditions. Only the
interfacial boundary conditions are given.

The interfacial mass balance at the third order is

vz3 + 3Z1

∂vz2

∂z
+ 3Z2

∂vz1

∂z
+ 3Z2

1

∂2vz1

∂z2
− 3vx1

∂Z2

∂x
−

(
3vx2 + 6Z1

∂vx1

∂z

) (
∂Z1

∂x

)

=
ρ∗

ρ

[
v∗

z3 + 3Z1

∂v∗
z2

∂z
+ 3Z2

∂v∗
z1

∂z
+ 3Z2

1

∂2v∗
z1

∂z2
− 3v∗

x1

∂Z2

∂x
−

(
3v∗

x2 + 6Z1

∂v∗
x1

∂z

)(
∂Z1

∂x

)]
.

(A 8)

The no-slip interfacial boundary condition at the third order is

3vz1

∂Z2

∂x
+ 3

(
vz2 + 2Z1

∂vz1

∂z

)(
∂Z1

∂x

)
+ vx3 + 3Z1

∂vx2

∂z
+ 3Z2

∂vx1

∂z
+ 3Z2

1

∂2vx1

∂z2

= 3v∗
z1

∂Z2

∂x
+ 3

(
v∗

z2 + 2Z1

∂v∗
z1

∂z

) (
∂Z1

∂x0

)
+ v∗

x3 + 3Z1

∂v∗
x2

∂z
+ 3Z2

∂v∗
x1

∂z
+ 3Z2

1

∂2v∗
x1

∂z2
.

(A 9)

The normal stress balance at the interface is

Ca

{
P3 + 3

∂P2

∂z
Z1 + 3

∂P1

∂z
Z2 + 3

∂2P1

∂z2
Z2

1 − P ∗
3 − 3

∂P ∗
2

∂z
Z1 − 3

∂P ∗
1

∂z
Z2 − 3

∂2P ∗
1

∂z2
Z2

1

− 2

[
∂vz3

∂z
+ 3

∂2vz1

∂z2
Z2 + 3

∂2vz2

∂z2
Z1 + 3

∂3vz1

∂z3
z2

1 + 12
∂vz1

∂z

(
∂Z1

∂x

)2 ]
+ 2

μ∗

μ

[
∂v∗

z3

∂z

+ 3
∂2v∗

z1

∂z2
Z2 + 3

∂2v∗
z2

∂z2
Z1 + 3

∂3v∗
z1

∂z3
z2

1 + 12
∂v∗

z1

∂z

(
∂Z1

∂x

)2 ]}
+ 3

Ca

Pr

(
vz2 + 2

∂vz1

∂z
Z1

− 2vx1

∂Z1

∂x

) (
vz1 − v∗

z1

)
+ 3

Ca

Pr

(
vz2 + 2

∂vz1

∂z
Z1 − 2vx1

∂Z1

∂x
− v∗

z2 − 2
∂v∗

z1

∂z
Z1

+ 2v∗
x1

∂Z1

∂x

)
vz1 − BoZ3 +

∂2Z3

∂x2
− 9

∂2Z1

∂x2

(
∂Z1

∂x

)2

= 0, (A 10)
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and the tangential stress balance at the third order is

μ∗

μ

{
− 12

(
∂v∗

x1

∂z
+

∂v∗
z1

∂x

)(
∂Z1

∂x

)2

+
∂v∗

x3

∂z
+ 3Z1

∂2v∗
x2

∂z2
+ 3Z2

∂2v∗
x1

∂z2
+ 3Z2

1

∂3v∗
x1

∂z3

+
∂v∗

z3

∂x
+ 3Z1

∂2v∗
z2

∂z∂x
+ 3Z2

∂2v∗
z1

∂z∂x
+ 3Z2

1

∂3v∗
z1

∂z2∂x
− 6

∂v∗
x1

∂x

∂Z2

∂x
− 6

(
∂v∗

x2

∂x
+ 2Z1

∂2v∗
x1

∂z∂x

)

×
(

∂Z1

∂x

)
+ 6

∂v∗
z1

∂z

∂Z2

∂x
+ 6

(
∂v∗

z2

∂z
+ 2Z1

∂2v∗
z1

∂z2

)
∂Z1

∂x

}
− Ma

Ra
Rac

{(
∂T3

∂x
+

dT0

dz

∂Z3

∂x

)

+ 3Z1

∂2T2

∂z∂x
+ 3

∂T1

∂z

∂Z2

∂x
+ 3Z2

∂2T1

∂z∂x
+ 3Z2

1

∂3T1

∂z2∂x
+ 3

(
∂T2

∂z
+ 2Z1

∂2T1

∂z2

)(
∂Z1

∂x

)}

+ 3
Ma

Ra
Rac

(
∂T1

∂x
+

dT0

dz

∂Z1

∂x

)(
∂Z1

∂x

)2

− 3
Ma

Ra

(
∂T1

∂x
+

dT0

dz

∂Z1

∂x

)

= − 12

(
∂vx1

∂z
+

∂vz1

∂x

)(
∂Z1

∂x

)2

+
∂vx3

∂z
+ 3Z1

∂2vx2

∂z2
+ 3Z2

∂2vx1

∂z2

+ 3Z2
1

∂3vx1

∂z3
+

∂vz3

∂x
+ 3Z1

∂2vz2

∂z∂x
+ 3Z2

∂2vz1

∂z∂x
+ 3Z2

1

∂3vz1

∂z2∂x
− 6

∂vx1

∂x

∂Z2

∂x

− 6

(
∂vx2

∂x
+ 2Z1

∂2vx1

∂z∂x

)(
∂Z1

∂x

)
+ 6

∂vz1

∂z

∂Z2

∂x
+ 6

(
∂vz2

∂z
+ 2Z1

∂2vz1

∂z2

)
∂Z1

∂x
.

(A 11)

The interfacial energy balance at the third order is

− 3
E

Ra

(
∂T1

∂z
− k∗

k

∂T ∗
1

∂z

)
−

[
vz3 + 3

∂vz1

∂z
Z2 + 3

∂vz2

∂z
Z1 + 3

∂v2
z1

∂z2
Z2

1 − 3vx1

∂Z2

∂x

− 3vx2

∂Z1

∂x
− 6

∂vx1

∂z
Z1

∂Z1

∂x

]
+ 3KPCvz1

(
v2

z1 + v2
x1 − v∗2

z1 − v∗2
x1

)
− E

Ra
Rac

[
∂T3

∂z

+ 3
∂2T2

∂z2
Z1 + 3

∂2T1

∂z2
Z2 + 3

∂3T1

∂z3
Z2

1 − 3
∂T1

∂x

∂Z2

∂x
− 3

∂T2

∂x

∂Z1

∂x
− 6

∂2T1

∂z∂x
Z1

∂Z1

∂x

− k∗

k

(
∂T ∗

3

∂z
+ 3

∂2T ∗
2

∂z2
Z1 + 3

∂2T ∗
1

∂z2
Z2 + 3

∂3T ∗
1

∂z3
Z2

1 − 3
∂T ∗

1

∂x

∂Z2

∂x
− 3

∂T ∗
2

∂x

∂Z1

∂x

− 6
∂2T ∗

1

∂z∂x
Z1

∂Z1

∂x

)]
− VPC

{
6vz1

[
∂vz2

∂z
− 2

(
∂vz1

∂x
+

∂vx1

∂z

)
∂Z1

∂x
+ 2

∂2vz1

∂z2
Z1

]

− 12vx1

∂vz1

∂z

∂Z1

∂x
+ 6

∂vz1

∂z

(
vz2 + 2

∂vz1

∂z
Z1

)
− μ∗

μ

{
6v∗

z1

[
∂v∗

z2

∂z
− 2

(
∂v∗

z1

∂x
+

∂v∗
x1

∂z

)

× ∂Z1

∂x
+ 2

∂2v∗
z1

∂z2
Z1

]
− 12v∗

x1

∂v∗
z1

∂z

∂Z1

∂x
+ 6

∂v∗
z1

∂z

(
v∗

z2 + 2
∂v∗

z1

∂z
Z1

)}}
= 0, (A 12)

and the continuity of interfacial temperature condition is

T3 + 3Z1

∂T2

∂z
+ 3Z2

∂T1

∂z
+ 3Z2

1

∂2T1

∂z2
+ Z3

dT0

dz
= T ∗

3 + 3Z1

∂T ∗
2

∂z
+ 3Z2

∂T ∗
1

∂z

+ 3Z2
1

∂2T ∗
1

∂z2
+ Z3

dT ∗
0

dz
. (A 13)

To close the problem, the thermodynamic equilibrium relation between the vapour
pressure and vapour temperature and the constant volume conditions is needed. The
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third-order expansion of the equilibrium relation is

ΠKE

(
P ∗

3 + 3
∂P ∗

2

∂z
Z1 + 3

∂P ∗
1

∂z
Z2 + 3

∂2P ∗
1

∂z2
Z2

1

)
− 1

T ∗
0

(
T ∗

3 + 3
∂T ∗

2

∂z
Z1 + 3

∂T ∗
1

∂z
Z2

+ 3
∂2T ∗

1

∂z2
Z2

1 +
dT ∗

0

dz
Z3

)
+ 3

1

T ∗2
base

(
T ∗

2 + 2
∂T ∗

1

∂z
Z1 +

dT ∗
0

dz
Z2

)(
T ∗

1 +
dT ∗

0

dz
Z1

)

− 2

T ∗3
0

(
T ∗

1 +
dT ∗

0

dz
Z1

)3

− ΠPEZ3 = 0. (A 14)

At the third order, we do not have to calculate u3 and Z3 as our goal is to
find the value of A2. The solvability condition is sufficient to calculate its value,
and once A2 is determined the enhancement in the heat transfer can also be
determined.
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